Packet Processing at 100 Gbps and Beyond—
Challenges and Perspectives

Simon Hauger*, Thomas Wild', Arthur Mutter*, Andreas Kirstidter*,

Kimon KarrasT, Rainer OhlendorfT, Frank Feller®, and Joachim Scharf*

*Institute of Communication Networks and Computer Engineering (IKR),

Universitit Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Email: {simon.hauger, arthur.mutter, andreas.kirstaedter, frank.feller, joachim.scharf} @ikr.uni-stuttgart.de
Tnstitute for Integrated Systems (LIS),

Technische Universitiat Miinchen (TUM), Arcisstralie 21, 80290 Munich, Germany

Email: {thomas.wild, kkarras, rainer.ohlendorf} @tum.de

Abstract

The continuous growth of traffic volumes steadily raises the throughput requirements on the network infrastructure. Ad-
ditionally, a transformation of the classical TDM-based backbone networks to packet networks with Carrier Ethernet as
the target technology occurs. The standardization process of 100 Gbps Ethernet is under way. This not only poses big
challenges to transmission but also to packet processing technologies. However, recent announcements from network
processing unit (NPU) vendors promise that packet processing at 100 Gbps is feasible. The big question for system
manufacturers now is, whether this trend will continue and finally lead to 1 Tbps packet switching, or whether there are
technological roadblocks that inhibit this development path. In this paper, we address this question and identify packet
processing performance, packet buffer throughput, chip-to-chip interface speed, and power dissipation as the most critical
factors. We discuss their limiting factors as well as architectural and technological trends that can further increase their
performance. Based on these investigations and extrapolating anticipated technological advances we expect that 1 Tbps
packet processing and switching could be introduced in the network within several years. Since this, however, not only
depends on technological but also on economical factors, we show how slight modifications of the network architecture

and protocols could alleviate some implementation complexities and thus reduce the overall cost.

1 Introduction

New Internet services like IPTV and the forecasted
Full/Ultra HDTV over IP as well as the applications in the
framework of Web 2.0 together with the constantly increas-
ing coverage of fixed and broadband access networks are
leading to annual growth rates of backbone bandwidth de-
mands in the order of 100 percent or even more. As by
far the major part of the transported traffic is packet-based
by its origin and due to advantages in terms of flexibility,
we are currently seeing a shift from classical TDM based
transport networks to packet-based architectures. A major
step in this direction is the development and deployment of
Carrier Ethernet and similar technologies like the Trans-
port Profile for Multi-Protocol Label Switching (MPLS-
TP) that the IETF and the ITU-T are jointly standardiz-
ing. First products for 100 Gbps Ethernet are commonly
expected to enter the market in 2009/10 and are already
highly desired by network operators, internet exchanges,
and data center operators.

However, a major question is the sustainability of this trend
towards packet-based transport networks: Will we still see
an increase of networking speed beyond 100 Gbps Ether-
net? Optical transmission technology is constantly evolv-

ing to the speed of 1 Tbps on a single wavelength and ef-
ficient methods are available to make use of parallel trans-
mission over several wavelengths. However, a matching
development allowing the electronic packet processing and
switching to keep pace with the huge increase in trans-
mission speed is still an open issue. We therefore inves-
tigate the scalability of the data plane towards speeds be-
yond 100 Gbps, disregarding the control and management
planes of packet-switched transport networks, which also
still require novel technological solutions.

In this paper, we therefore discuss the throughput limiting
effects in the data plane of future packet transport networks.
We focus on the network processing units (NPU) within the
nodes handling layer 2.5 and 2 traffic (IP/MPLS and Packet
Transport / Carrier Ethernet). Extrapolating the standard-
ization timeline for 1, 10, and 100 Gbps Ethernet and look-
ing at announced bandwidth growth data (e. g. from the In-
ternet exchange points) we target the timeframe around the
year 2015 for our evaluations of the technologies involved
for a desired 1 Tbps Ethernet.

In the next section, we first discuss more generally the re-
lated aspects of network performance and evolution before
defining a reference model for a generic packet network
node. In section 3, we identify the critical technological

aspects and building blocks regarding their influence on
the maximum achievable packet throughput in the nodes
and show their possible evolution paths to line speeds of
1 Tbps. In addition to this, in section 4 we discuss possi-
ble slight network and protocol related modifications that
have the potential to strongly reduce the requirements on
the packet processing hardware at such high line speeds.
Finally, we summarize our investigations in section 5.

2 Networks and Network Nodes
2.1 Today’s Networks

Transport networks have traditionally been dominated by
TDM over WDM technologies like SDH and SONET. Re-
cently however, the operators became more interested in
packet transport technologies. The reasons behind this
move are twofold: On the one hand, the traffic streams
flowing over transport networks originate in by far the ma-
jority of cases from packet-based traffic sources on the bor-
ders of the transport network and no longer from TDM-
based telecommunication services and applications. Thus,
strictly channel oriented TDM transport technologies lack
the degree of flexibility and adaptability needed. On the
other hand, enterprise and private LAN installations—
especially on the basis of Ethernet—have reached such
high total numbers of ports that their components show
very interesting economies of scale. Thus, to save cost op-
erators and manufacturers are increasingly interested to use
components and technologies from the LAN domain also in
transport networks.

With this migration towards fully packet based architec-
tures even in the core of the network, the processing of
packets at ultra-high rates is becoming the major challenge
for network elements. Therefore, the packet processing rate
defines an important performance metric—besides the ever
increasing bit rate that has to be handled at the interfaces.
In carrier networks the forwarding effort per packet is con-
stant, so the shortest packets define the worst-case load im-
posed onto the nodes. For system design it is generally
accepted to use this assumption for the packet rates arriv-
ing at the network element under consideration. As most
of the traffic at the borders of future transport networks is
Ethernet based and since Ethernet technologies are more
and more considered for their usage in transport networks,
we can assume that the minimum packet size will be that
of Ethernet: 64 bytes. For a 100 Gbps Ethernet link with a
minimum frame size of 64 bytes the processing time bud-
get per packet! is only 6.7 ns (including inter-frame gap and
preamble) and would decrease accordingly if we move on
to 1 Tbps Ethernet.

Such high packet rates resp. low processing time budgets
demand a significant reduction of processing effort for the

! As datagram processing in network nodes is tranditionally called packet
processing, in the following we use the term packer instead of frame irre-
spective of the processed layer.

Switch

Line Card 1 Fabric
——=t---F-—F=-——————— F——d————4»-{
PHY Processing & Fabrig A
MAC Memory IF V
I
I
Line Card n ;. ;
1
. \
PHY Processing & Fabriq |
MAC Memory IF “ /
<-H+---+ e -——F---t+F—

Figure 1 Principle packet processing path in a high-speed
network node

individual packets. As it is commonly accepted, classi-
cal IP header processing is not scalable to those speeds.
High-speed network elements increasingly operate on the
basis of label switching and virtual packet paths set up by
network management or distributed network control plane
approaches. The usage of label switching avoids the high
processing requirements of longest prefix match lookups
as needed for IP routing. Also forwarding table sizes can
be reduced by setting up the paths efficiently. Originally,
MPLS has been introduced for this purpose and has mean-
while evolved to a powerful traffic engineering concept on
the layer 2.5.

Currently, this label-switching and virtual path concept is
also extended to the emerging packet transport networks
below IP/MPLS. Carrier Ethernet uses MAC header stack-
ing in the form of PBB-TE to implement packet transport
tunnels. Also, MPLS itself is extended by a Transport
Profile (MPLS-TP) to fulfill the carrier grade requirements
(OAM etc.) of transport networks.

2.2 Network Nodes

Current high-performance network nodes deployed in core
networks have a modular structure. As depicted in Fig.1
they consist of several line cards, a switch fabric as well as
one or more cards for control and management tasks (not
shown in the figure) [1]. The individual bidirectional line
cards receive, process, buffer and transmit the packets. All
line cards are attached to the switch fabric that forwards
each packet from its ingress line card to its egress line card.
A line card itself comprises one or more line interfaces
and its corresponding PHY (Physical Layer) and MAC
(Medium Access Control) chips, a network processing sub-
system, and a switch fabric interface. The network process-
ing subsystem contains an NPU with integrated or separate
traffic manager, other co-processors as well as on-chip and
off-chip memories.

In the following we describe the way of a packet traversing
the network node. The PHY chip receives the optical signal
from the fiber and performs opto-electronic conversion, as

well as clock and data recovery. The MAC chip detects the
frame boundaries, checks the frame’s integrity and deliv-
ers it to the network processing subsystem. Here an NPU
parses and classifies the packet, performs a route lookup
to determine the outgoing interface, and modifies certain
header fields. During processing, the packet is stored ei-
ther on-chip or off-chip. An off-chip memory with queues
of different classes of service (CoS) holds the packets in
case of congestion. As soon as the corresponding line in-
terface is available, the switch fabric forwards the packet
to the egress line card. For this the switch fabric interfaces
transform the packet data between the formats used on the
line cards and in the switch fabric. The traffic manager
schedules the packet’s transmission according to its CoS.
An NPU at the egress side may perform further processing
steps on the packet, before it is transmitted by the MAC
and PHY chips.

2.3 Network Processors

The architectures of current high speed NPUs with 10-40
Gbps throughput are based on two distinct configurations:
a pool of processors and a pipeline of processors.

The first configuration, as depicted in Fig. 2a, is found
in current products from Cisco [2], AMCC [3] and Cav-
ium [4]. Here each packet is processed by a single pro-
cessor out of a pool of identical processors. The individ-
ual processors communicate with the interfaces, memory
and hardware accelerators (e.g. dedicated traffic managers,
cryptographic modules, lookup engines) using bus systems
or crossbar communication structures.

The second configuration, the pipeline, is shown in Fig. 2b.
It is found in NPUs from Xelerated [5] or Bay Microsys-
tems [6]. In such an architecture a packet is processed se-
quentially by all processors. An advantage of this configu-
ration is its reduced communication effort.

Combinations of both configurations are found in products
of EZchip [7] and Netronome [8] (that bought the NPU
business from Intel [9]). Such configurations either feature
a pipeline structure with each stage containing a pool of
processors or a cluster of processors with special intercon-
nects, which allow building a software pipeline.

3 Architectures and Technologies

The major functionalities that have to be provided by NPUs
can be categorized in two main areas. Firstly, an NPU has
to execute data plane functions for each incoming packet.
This comprises to determine the output port, where the
packet has to be transmitted, and if necessary to modify it
according to the corresponding network protocol and the
current network configuration. (In this paper, we disre-
gard control plane functions, which usually have less strin-
gent real time requirements.) Secondly, packets have to be
buffered—depending on the architecture during process-
ing, and in any case for the time needed to resolve con-

a) Pool of Processors Architecture

Processor Pool

[[[I
Proc J Proc J Proc J HW J
Accel

‘ Interconnect ‘

Off-chip 110 110 On-chip
Mem Citrl (MAC) (Fabric) Mem
b) Pipeline of Processors Architecture
HW
Accel Lookup
110 110
— (MAC) = Proc = Proc |-..» Proc [(Fabric)

Figure 2 Pool-based and Pipeline-based Network Proces-
sor Architectures

gestion at the output port of the node.

Line speeds in the range of hundreds of Gbps pose big chal-
lenges to cope with these two major tasks in real time. Traf-
fic loads consisting of minimum size packets make up the
worst case for processing. An NPU that processes unidi-
rectional (half duplex) traffic on a 100 Gbps Ethernet link
has to cope with a packet arrival rate of roughly 150 Mpps,
which means that it has to be ready to accept a new packet
every 6.7 ns. Architectural alternatives for the data path of
NPUs that cope with the processing requirements are dis-
cussed in the next section.

In addition to the actual forwarding-specific sub-functions,
a packet buffer is needed to store and retrieve packets ac-
cording to their arrival and departure (on the switch fabric
or MAC interface) and depending on how packet process-
ing is done. Memory bandwidth requirements for unidi-
rectional traffic may be in the region of four to six times
the I/O (input/output) speed in the worst case. This fig-
ure could even go higher if full duplex operation has to
be supported or several ports on a line card share a single
packet buffer. Therefore, the memory subsystem of NPUs
is a decisive component to provide very high throughputs,
an issue that is covered in section 3.2.

Besides these functional aspects, high data rates also
cause big challenges to the implementability of appropriate
NPUs. In section 3.3 we put the focus on the implementa-
tion of the interconnection of high speed NPUs to the rest
of the chip set that makes up the line card. This has direct
influence on feasibility and cost of a final implementation.
A further non-functional requirement is the limitation of
total power consumption in order to restrict packaging
cost and to allow reliable operation with air cooling in
a router chassis. Assuming similar requirements as in

AdvancedTCA (Advanced Telecom Computing Architec-
ture) [10], 200 W power dissipation would be allowed per
line card. Taking into account two NPUs on the line card
for full duplex operation and reserving a certain power bud-
get for the rest of the chip set, the maximum power dissipa-
tion per NPU would have to be in the range of 40 to 80 W.
Appropriate packaging solution will have to keep up with
power consumption, the required I/O speed, and the result-
ing pin count.

In addition to describing current architectures and tech-
nologies, we discuss their scalability trying to answer the
question: Will 1 Tbps packet processing be feasible? We
assume that this line speed will be introduced in the year
2015. As technological background for our investigations,
it can thus be expected that CMOS technology will have
evolved from today’s 40nm to 20 nm minimum feature
size.

3.1 Packet Processing

The throughput of a network processor is inversely pro-
portional to the processing time. In order to achieve the
required high throughput, NPUs make strong use of par-
allelization. As we introduced in section 2.3, almost all
NPUs contain several processor cores that work in parallel:
arranged as a pool, as a pipeline, or as a combination of
both.

In a pool configuration—at first glance—the throughput
seems to be linearly proportional to the number of paral-
lel processors. However, a large number of processors that
have to be connected to shared resources, like memory and
coprocessors, require a large interconnection system be-
tween them. This directly maps to increased chip area and
power consumption. Additionally, arbitration and locking
mechanisms may degrade the system’s throughput.

The throughput of a pipeline of processors is determined by
the longest processing time within one of its stages. Task-
specific resources can be assigned to single stages so that
less access conflicts occur. Additionally, no complex in-
terconnection mechanisms are necessary, as there are only
point-to-point connections between the processors and to
attached resources.

In all configurations, parallelization within a processor core
is used to increase its throughput. Both superscalar archi-
tectures and Very-Long-Instruction-Word architectures are
deployed. By providing multiple register sets, the proces-
sor hardware supports also multi-threading. Switching to
another thread efficiently hides memory latencies.

A further way to speed up NPUs is to add coprocessors and
hardware accelerators for compute-intensive tasks like ci-
phering, checksum calculation or classification. Addition-
ally, optimized hardware is usually more power-efficient
than performing the respective tasks in software. Here too,
the interconnection to the processor cores is critical both in
terms of speed and power.

The computational density within NPUs differs substan-
tially. While the processors in a pool configuration have
a rather general purpose instruction set, the processors of
a pipeline are often optimized to certain tasks. Thus, the
former configuration offers a higher flexibility, but the lat-
ter provides a higher throughput as fewer instructions are
needed for a certain task.

Considering high-performance NPUs, we currently ob-
serve a major trend to pipeline-based architectures with
equal, constant processing times in each stage. Such
pipeline architectures offer a deterministic, high packet
throughput, and a low interconnection effort. Due to the
fixed processing time per stage and the given length of the
pipeline, only a limited number of functions can be per-
formed. However, this fits well to the fairly simple layer
2 to 2.5 processing functions that are needed in core net-
works.

Both EZchip [11] and Xelerated [12] recently announced
100 Gbps Ethernet capable NPUs that are based on a deter-
ministic pipeline architecture. The pipeline of the EZchip
NPU comprises four stages, each with a pool of several
task-optimized processors. In contrast, the pipeline of the
Xelerated NPUs consists of 512 special processors and
each processor executes only one instruction per 64-byte
word of a packet.

Also in terms of power consumption, pipelined architec-
tures are preferable. Current lower speed grade NPUs
in the range of 10 to 20 Gbps with a pool configura-
tion have a power dissipation of several tens of Watt
(Netronome IXP2855 32 W in 130 nm, Cavium OCTEON
Plus CN58XX 40 W and Cisco Quantum Flow 80 W, both
in 90 nm technology). Pipelined NPUs of even 40 Gbps
performance like Xelerated X10q (130nm) or Bay Net-
works Chesapeake (110 nm, including also a traffic man-
ager) only consume about 10 and 16 Watt, respectively.
Therefore pipeline architectures are much better scalable to
high throughputs and we estimate a power consumption of
30 to 40 Watt for pipelined 100 Gbps NPUs using a 65 nm
technology.

When even higher throughputs are needed in future net-
works, within an NPU similar to that of EZchip the num-
ber of parallel engines per pipeline stage can be increased.
However, access problems as well as interconnection prob-
lems to shared resources within one stage might occur here.
The NPU from Xelerated is clocked at 322 MHz using a
65 nm technology. Moving to even smaller geometries in
the future as well as minimizing the combinatorial paths
within the pipeline may further increase its throughput.

Generally, a pipeline based system that processes only a
fixed amount of bytes (basically the header) of each packet
and that forwards this data to the following stage in each
clock cycle achieves a packet throughput corresponding to
its clock rate. Thus, if a clock rate of e.g. 2GHz will
be achieved in some years—as is already achieved with

| packet processing

o packets 2R (max) &
= Q
© 8
Q memory manager 0 o
g _> y g 1 -
= RX, R [memory controller | X, R 8

2
2 1-2R + 2R(max) M1-2R >

buffer memory

Figure 3 Principle packet buffer architecture — bandwidths
depicted assume a line card with one port at line rate R

general purpose processors—such a system will support a
packet throughput of 2 billion packets per second, corre-
sponding to a line rate of at least 1.3 Tbps. Obviously, the
system would have to be capable to buffer the remaining
part of the packet fast enough.

3.2 Packet Buffer

A typical high-speed network node architecture as shown
in Fig. 1 uses input packet buffering while maintaining vir-
tual output queuing to prevent head-of-line blocking. Typ-
ically, the number of supported queues is in the order of
thousands.

Fig. 3 shows the principle packet buffer architecture. The
memory manager abstracts from actual memory organiza-
tion providing NV logical queues where packets are stored
and retrieved from. Therefore it statically or dynamically
assigns memory to the individual queues. In case of dy-
namic allocation, the memory manager divides the avail-
able memory into segments. It is common to build queues
by concatenating these segments via linked lists, as done
in [13]. Furthermore, a memory controller abstracts from
the details of the physical memory.

In the following we derive the throughput and size re-
quirements before presenting a practical solution and future
trends.

3.2.1 Requirements

The packet buffer has to store packets as fast as they arrive
and retrieve them as fast as they depart. With this, the min-
imal required memory bandwidth is 2R, where R is the line
rate of the served port.

It is common for network nodes to segment packets
into fixed size chunks to simplify memory management.
64 Byte is the common choice as it is the first power of
two able to hold a minimal Ethernet or IP packet. Never-
theless, in the worst case the packet buffer must sustain a
stream of 65 Byte packets, which all consume two 64 Byte
chunks, leaving the second nearly empty. This is called the
65 Byte problem [14]. The consequence is a required over-
provisioning of memory bandwidth by a factor of two on
RX (receive) and TX (transmit) side of the packet buffer.

Furthermore, depending on the architecture, it can be nec-
essary to access the packet headers for processing. These
usually reside in the first memory segment of the packet.
Assuming only minimum size packets an additional mem-
ory bandwidth of up to 2R is therefore required (grey arrow
in Fig. 3), as due to the access granularity of the memory
the complete segment is fetched for being processed and
finally stored back.

Putting all together, a line card according to Fig. 1 with one
port would require up to 6R of memory bandwidth, e.g.
600 Gbps for 100 Gbps Ethernet.

The required size of a packet buffer depends on many fac-
tors, like traffic characteristics, number of logical queues,
target loss rate, etc. There is a widely used rule-of-thumb
that says, for TCP to work well, the buffer should be di-
mensioned to RTT' x R, where RT'T is the round trip time
between active end hosts [15]. Assuming an RTT of 200 ms
and a line rate of 100 Gbps the buffer size for a single port
is 2.5 GByte. In [15] the authors show that buffer size could
be reduced to RTT X R/ V/N, where N is the number of
major active TCP flows. This would reduce the buffer size
to around 1 %. Nevertheless, for historical reasons and not
to put the Service Level Agreements (SLA) at a risk [16]
the network operators are likely to continue buying routers
with buffers as large as possible.

In summary, both the required bandwidth and size of the
packet buffer grow linearly with the line rate R and there-
fore pose big challenges to packet buffer design.
Reviewing throughput, density, power consumption and
price of currently available memory types, only (exter-
nal) dynamic RAM (DRAM) fulfills all these requirements.
The drawbacks of DRAM are its rather long and non-
constant access time T’y of around 50 ns, the necessity for
refresh of the DRAM cells and the complex control. Trc
is the maximum time to write to, or read from any mem-
ory location and limits the possible number of read/write
operations. Already with 10 Gbps Ethernet, in the worst
case the memory has to be accessed every 16.8 ns (assum-
ing 4R total bandwidth) to store or retrieve a packet, which
is far below Trc. Exploiting the bank concept supported
by DRAMs the effective Trc can be reduced. Therefore
the individual B banks of a DRAM are accessed in an in-
terleaved manner, leading to an effective access time of
Trc/B in the best case [17]. Nevertheless, the level of
reduction greatly depends on the access pattern.

3.2.2 Current Solution

In practice router line cards use multiple independent
DRAM devices in parallel, firstly, to obtain the required
aggregate memory bandwidth, and secondly, to reduce the
random access time of the packet buffer to that dictated by
the line rate. The latter is achieved by stripping the data sta-
tistically across all DRAM devices and its banks [18]. With
M DRAM devices a random access time in the range of

packets

. hortcut

tail cache | S head cache| 0O C
f— | —

(SRAM) (SRAM)

T T 1 T T 1
R wyblocks blocks R

buffer memory (bulk DRAM)

from processing
”lk

to switch fabric IF

Figure 4 Memory hierarchy with head and tail cache

Tre to Tre /(M - B) can theoretically be achieved. Due
to the dependence on the access pattern, the access guar-
antees are only statistical and so the system could loose
throughput in an unpredictable way. The Intel IXP2800
NPUs use this approach with three parallel RDRAM (Ram-
bus DRAM) memories [19].

3.2.3 Trends

There is a trend to lower the bandwidth requirements to be
provided by the packet buffer. The number of ports per line
card can be decreased to a minimum of one single port.
Furthermore, the required bandwidth can be reduced to 4R
by doing all the packet processing before buffering. This
requires a second small packet buffer (preferably on-chip)
to store packets for a bounded processing time. With this,
the main buffer memory has only to be accessed in a first in
first out (FIFO) manner, reducing memory manager’s com-
plexity.

A promising architectural approach to deal with access
times and bandwidth requirements is to use a memory hier-
archy [14, 17] similar to computer systems. This approach
may already be used in current systems. Fig. 4 shows the
basic architecture of a packet buffer using a memory hi-
erarchy. Head and tail of all FIFO queues are stored in
fast static RAM (SRAM). The remaining part is stored in
the bulk DRAM. The tail cache initiates a data transfer to
DRAM when enough data has arrived. Then a large data
block is transferred from tail cache to the corresponding
queue in DRAM. Similarly, in preparation for the packet
departure, data from the corresponding queue is read in the
same large block granularity into the head cache. This ap-
proach has guaranteed constant access times, simplifying
overall system design. Due to the large blocks exchanged
with the bulk DRAM, this can be ideally combined with
memory parallelism on pin level, where all DRAM devices
are operated with the same commands and addresses. Fur-
thermore, as packet data can be seamlessly concatenated to
build the blocks, the 65 Byte problem does not arise. With
this, the effective required bandwidth reduces to a total of
only 2R. A drawback of this approach is that the required
size of head and tail caches (built from fast and expensive
SRAM) increases linearly with the number of FIFO queues
and the line rate.

3.24

Finally, we discuss the technological trends, limits and the
feasibility of 1 Tbps Ethernet which we expect in 2015 (6
years from today).

The fastest currently available DRAM is GDDRS (Graph-
ics Double Data Rate SDRAM), with a data rate of 5 Gbps
per pin [20]. Rambus [21] announced XDR2 memory with
up to 12.8 Gbps per pin to be available in the next years.
The 32 data pins of a GDDRS5 memory chip achieve in total
160 Gbps of gross throughput. With this, two chips could
suffice for the bandwidth demand of a 100 Gbps line card
with one port, requiring at least 2R =200 Gbps of mem-
ory bandwidth. With an approximate increase in DRAM
bandwidth of 30 % per year [22], the gap to the deployed
line rates will increase continuously, requiring more paral-
lel memories. Extrapolation shows a supposed increase by
a factor of 5 in DRAM bandwidth within 6 years. As Eth-
ernet’s data rate increases from 100 Gbps to 1 Tbps, i.e. by
a factor of 10, in the same period the number of parallel
memory chips has to be doubled to support the throughput.
The access time of DRAMs fall by only 7 % per year [15].
In 6 years extrapolation shows still a supposed access time
of 64 % of today’s value. With the increase from 100 Gbps
to 1 Tbps the time budget per packet decreases to 10 %. If
stripping data over memory chips, then 6.4 times more par-
allel memories are necessary to achieve the required access
time of below 1 ns. Using a memory hierarchy instead, the
cache size would increase by a factor of 6.4, requiring sev-
eral tens of MByte for head and tail cache assuming 10,000
queues.

With a large number of parallel memories pin count needs
to be considered. According to [23] available enterprise
server CPUs and boards feature three DDR3-DRAM chan-
nels with 240 pins each. With this, pin count is not awaited
to be limiting in near future. Furthermore, as the com-
puter industry, which is the main driver for DRAM devel-
opment, asks for ever larger memories, buffer capacity is
not awaited to be a problem in future.

Relaxing the size requirements to RTT x R/ V/N as pro-
posed in [15], the buffer size could shrink to around 1 %,
i.e. for a 1 Tbps Ethernet line card to some hundred MByte.
With this, 2D-planar MCPs (Multi-Chip Package) or in fu-
ture even 3D-stacked MCPs could be an alternative, avoid-
ing external memories with their main drawbacks concern-
ing pin count and line card layout. Furthermore, signifi-
cantly higher bandwidths can be achieved with MCPs.
Concluding, with the assumptions and extrapolations
made, 1 Tbps Ethernet seems to be feasible in 2015 with
respect to packet buffers.

Memory Technology and Outlook

3.3 Chip Interconnects

For the connection of a high speed NPU to the interfaces
of both MAC and switch fabric, chip-to-chip interconnect
technologies with the appropriate speed are needed that re-

strict power consumption of the I/O circuitry and limit pin
count in order to enable cost efficient packaging solutions
while guaranteeing reliable data transfer. The traditional
solution for this problem is to transfer data serially, using
differential signaling techniques with low voltage swing
(e.g. LVDS, Low Voltage Differential Signaling), which
is both robust to noise and very power efficient.

Today’s interface solutions for 10 Gbps NPUs use such dif-
ferential interconnects, for example XAUI (10 Gigabit At-
tachment Unit Interface) and SPI-4.2 (System Packet In-
terface). XAUI is part of the IEEE Ethernet standard and
uses 4 differential wire pairs, each transporting 2.5 Gbps.
Taking into account an 8B/10B encoding scheme, this re-
sults in a frequency of 3.125 GHz per link. The interface
supports both receive and transmit direction and thus re-
quires 16 pins in total. A further well-established alterna-
tive for this speed range is SPI-4.2, which is standardized
by the Optical Internetworking Forum. It uses two 16 bit
wide data paths for receive and transmit with a minimum
speed of 622 Mbps for each LVDS signal. In addition to
the data path, each direction has flow control interfaces for
signaling FIFO buffer status.

Currently, the standardization of XLAUI 40 Gbps and
CAUI 100Gbps interfaces based on 10Gbps or even
25 Gbps differential signals is under way. There are also
several approaches targeting at scalable interfaces with
bandwidths of 100 Gbps and beyond. Interlaken is a new
concept for packet-based inter-chip communication mainly
in the range of 10 to 100 Gbps, but without an inher-
ent speed limitation. Its interface is channelized and its
throughput can be scaled by the number of parallel serial
lanes and their speed. Compared to SPI-4.2 Interlaken re-
quires 90% less pins. A similar approach is followed by
the Scalable System Packet Interface (SPI-S), a successor
of SPI-4. SPI-S, which provides interfaces for data transfer
and associated flow control information, may be used for
uni- or bi-directional and also asymmetric links.

The described concepts mainly aim at scalable high speed
inter-chip packet communication and enable solutions that
differ in number and speed of the underlying channels. As
the concepts specify the protocol only, they can be real-
ized using different high speed physical layer transmission
technologies. To cope with 100 Gbps and higher, several
of these serial interconnect lanes have to be operated in
parallel. The actual number of signals and the power con-
sumption needed for these packet interfaces is then mainly
determined by the available transceivers.

Research in transceiver technology has a long tradition. So-
lutions heavily differ in I/O speed, power consumption and
the required chip area, even when the same technology gen-
eration is used. Two examples of transceivers for 10 and
20 Gbps implemented in 90 nm CMOS have been shown
at recent ISSCC conferences [24, 25]. They consume
200-300 mW and require less than 0.2 mm?. A complete

12.5 Gbps SerDes (Serializer/Deserializer) device, which
in addition to the transceiver also contains serial to paral-
lel conversion to establish a connection to the chip-internal
parallel data path, is presented in [26]. In [27] the trans-
mitter side of a 20 Gbps SerDes is described. Both devices
are implemented in 65 nm CMOS with power dissipation
values in the same range as mentioned before, but the full
SerDes is much bigger than the transmitter and has an area
of 0.45 mm?2.

Considering these results, we assume that a full SerDes for
20 Gbps with a power consumption of roughly 300 mW
and an area of about 0.4 mm? should be feasible in the near
term. Thus, the 200 Gbps I/O performance needed by a
100 Gbps NPU would be feasible with 5 to 6 SerDes mod-
ules. The resulting power of 1.5-1.8 W and area cost of
2-2.4mm? should make up no problem for the implemen-
tation. The same holds true for the required pins.

When looking at a 1 Tbps NPU, scaling throughput require-
ments would lead to roughly 10 times the area and power
consumption, which might be critical considering the over-
all power budget. If I/O speed of SerDeses could be dou-
bled to 40 Gbps, appropriate packaging solutions should be
feasible for this speed [28]. Then 25 or 30 of such high
speed SerDes instances would have to be run on a single
die. In comparison to this, the I/O subsystem of today’s
3rd generation SPARC processor [29], consists of 288 RX
and TX SerDes channels with 4.08 Gbps each and is imple-
mented in 65 nm technology (46 mm? and 21.2 W). Con-
sidering the 1.1 Tbps overall I/O throughput of this proces-
sor and taking into account the further miniaturization to-
wards 20 nm, the I/O requirements of a future 1 Tbps NPU
should be met as well, trading-off number and speed of then
available SerDes modules.

4 Network and Protocol Aspects

The feasibility of packet processing at high line rates does
not exclusively depend on technological constraints. Pro-
tocol design choices, along with criteria for network node
dimensioning, influence both the required processing rate
and the complexity of processing one packet. We detail on
these aspects in the following.

4.1 Dimensioning Criteria

Frequently applied rules for network node dimensioning
are based on worst-case assumptions. This applies both to
the buffer size formula RTT x R, as introduced in sec-
tion 3.2.1, and the supported packet rate. However, the
necessity of such stringent assumptions is questionable
in transport networks. For instance, the buffer size for-
mula provides for full link utilization by one single TCP
flow [15], a situation neither realistic nor desired in core
networks.

In today’s transport networks, buffers allow to prevent
packet loss in temporary congestion situations. Due to the

highly multiplexed traffic, they are not required to com-
pensate the behavior of individual protocol instances. In
addition, target link utilizations generally range well be-
low 100 %. High buffer levels are therefore indicative of
poor network dimensioning or sub-optimal traffic engineer-
ing. Since buffering introduces additional packet delay, the
buffering of large amounts of data in the network is not de-
sirable. This particularly applies to real-time application
data, where excessive delays are equivalent to packet loss.
Consequently, small buffers should be sufficient in network
nodes. If buffers would be reduced to few MBytes, they
could be realized on-chip, providing considerable benefits:
reduced design complexity, very wide words, increased
bandwidth and no need for I/O pins.

Only a long sequence of minimum size packets transmitted
back to back results in the worst-case packet rate today’s
network nodes are dimensioned for. However, the occur-
rence of such a sequence is highly unlikely. Consequently,
NPUs could be dimensioned to less stringent requirements,
which mostly benefits the actual packet processing. The
target processing rate should range between the average
and the worst-case packet rate. For instance, a reduction to
50 % of the worst-case packet rate would already cut pro-
cessing requirements by half.

4.2 Switching Granularity

Besides adapting dimensioning rules, we can reduce the ac-
tual processing load by decreasing the packet rate. There
are three different approaches. A first one is the increase
of the maximum size of packets transported between end
systems. It particularly reduces the number of packets re-
quired for the transfer of large blocks of data, and thus the
mean packet rate. On the downside, the maximum packet
rate remains unaffected.

If dimensioning is done on worst-case assumptions, the
increase of the minimum packet size is of more interest.
This is achieved by extending smaller packets with padding
data to the required minimum size. Since the worst-case
packet rate is close to inversely proportional to the mini-
mum packet size, we can thereby bound the packet rate as
desired.

The third approach is to concatenate packets following the
same path through the transport network at this network’s
edge. Within the network, the resulting aggregates are pro-
cessed instead of the individual packets they contain. Thus,
less processing is required. On the downside, aggregation
induces additional delay. However, it can often be kept in
uncritical regions negligible compared to the overall trans-
mission delay [30].

It should be noted that all of these approaches mainly al-
leviate the requirements on the packet processing unit. In
contrast, the bandwidth requirements for the packet buffer
as well as the packet reception and transmission over the

switch fabric and line interfaces, remain largely unaffected
by changes of the packet rate.

If processing in network nodes has to be reduced further,
we may go back to circuit switching techniques like TDM.
Due to pre-defined treatment of the contents of time slots,
processing and buffer requirements are kept to a minimum.
Besides, optical switching, e.g. by future optical packet
switching systems, could completely replace electrical pro-
cessing in some nodes.

4.3 Processing Tasks

Standardization of networking protocols offers further po-
tential to ease packet processing and thus to contribute
to achieving higher packet throughput. The appropriate
choice of protocol specific functionalities and an optimized
layout of packet headers can reduce the effort for imple-
menting the basic operations to be carried out in the data
path of NPUs. Many approaches already have reduced
the processing complexity of today’s protocols, especially
those used in the high speed core of the network. Two ex-
amples are the use of label based concepts, which heavily
simplify lookups to identify the next hop, and the omission
of checksums under the assumption of ever more reliable
transmission.

A further measure at the network core is to strictly limit
processing to packet headers, as payload inspection would
lead to additional processing load, which may even not be
strictly bounded depending on the payload content. In most
network concepts that apply content-dependent treatment
of packets, the associated processing is done for moder-
ate link speeds, before traffic aggregation on highest speed
links.

However, further coordinated standardization that consid-
ers the consequences of the later implementation could lead
to solutions with higher performance or less implementa-
tion effort. One example could be reducing the width of
fields used as lookup keys. If the width corresponds to
the number of lookup entries actually used in a network
or on a single network link and if it is small enough, the
key could directly be used as lookup address in a stan-
dard memory. If this is not possible and fields have to be
wider than the actual lookup key, the difference should be
bounded or rules about field usage (possible values) should
be defined, which both could allow to reduce hash collision
probability or even avoid this situation. Such a measure
would encourage standard RAM based lookup memory ar-
chitectures and avoid using additional TCAMs, which are
quite power hungry.

An extreme case for easing packet processing would be to
avoid table lookups at all. This could be achieved by a
special addressing scheme in which the next hop can be
determined from the destination address, e.g. geographic
routing. Another approach would be to apply source rout-

ing. Here, the edge node computes the complete path and
the core nodes only need to forward the packet to the next
nodes which are specified within the packet. However, the
suitability of such approaches for core networks is at least
questionable.

Even minor measures like the definition of fixed
positions—relative to the packet start—for all fields that
are relevant for processing would simplify packet parsing
and thus enable higher frequencies in hardware implemen-
tations or reduce the number of software operations. Pro-
hibiting the wrapping of fields over word boundaries would
also contribute to this effect.

Especially with respect to strictly pipelined architectures,
which by design have a bounded number of processing
stages, a limitation of functional depth, i.e. the number
of operations to be performed on a packet, is an important
protocol design goal. For label based schemes this would
mean to restrict the size of the label stack or at least the
number of labels to be processed in one network node.

Boosting processing throughput by implementing parallel
data paths is hampered if the processing state for each traf-
fic flow needs to be maintained. In such a case state in-
formation in the memory is usually locked for the duration
of the "read-modify-write" sequence in order to guarantee
data consistency. Parallel processing of packets belonging
to the same flow therefore stalls until the state information
is unlocked. The time needed for state processing relative
to the complete processing time would then limit the po-
tential to parallelize processing of such protocols, if back-
to-back sequences of packets belonging to the same flow
make up the traffic input.

Even for pipelined architectures with a highly parallel data
path, e.g. in the order of magnitude of a minimum size
packet, stateful processing is critical. If minimum pack-
ets follow directly one after the other, in each clock cy-
cle a new packet has to be processed. If these packets are
from the same flow and if stateful processing is required in
a pipeline stage, reading the state information of a subse-
quent packet would collide with the "modify-write" phases
of the previous one. Therefore, from the perspective of both
architecture types, stateful processing should be avoided in
the high-speed core of the network.

In addition, protocol functions requiring multiplication or
even division of arbitrary values, unless limited to powers
of 2, are highly undesirable because of the associated time
and/or resource complexity. An example for this is the im-
plementation of a generic leaky bucket mechanism as part
of a metering and marking function where the calculation
of the current bucket size requires a multiply operation be-
fore the decision about the packet’s acceptance.

These examples show that protocols that are applied in
highest speed packet processing should be lean, avoiding
as much functionality as possible, and be implementable
with very simple operations.

5 Conclusion

The current transition from circuit-switched to packet-
switched transport networks together with the introduction
of 100 Gbps Ethernet within the next 12 to 18 months raises
the question, whether and how packet processing will be
feasible at even higher speeds in the future. Product an-
nouncements of NPU vendors indicate feasibility for a line
rate of 100 Gbps. In this paper we investigated the main
challenges towards packet processing beyond 100 Gbps—
up to 1 Tbps, which we estimate to be introduced in about
six years from now, i.e. in 2015. The results of our stud-
ies concerning data plane processing, packet buffering and
chip-to-chip interconnects lead to the expectation that these
aspects should not inhibit scaling to 1 Tbps line rates.
Pipelined NPU architectures with very wide data paths and
inherently short combinatorial delays are scalable to Tbps
rates. They will have to be operated at Gigahertz pro-
cessing frequencies comparable to current state of the art
CPUs. Memory bandwidth evolution of advanced DRAM
technologies and the application of sophisticated buffering
strategies, which restrict the required throughput to a min-
imum and optimally exploit the available memory band-
width, will help to meet the throughput requirements of
packet buffers. Scalable packet interfaces, which rely on
high speed SerDes modules with a throughput of several
tens of Gigabits per second, together with an appropri-
ate number of parallel channels should provide sufficient
I/O capacity. Furthermore, future packaging technologies
should offer sufficient pin density as well.

Our study, however, could not shed enough light on the
overall power dissipation and the chip size of potential
1 Tbps NPUs. We are not able not give serious estimates
concerning these aspects, since a lack of basic data for to-
day’s NPUs hinders a sufficiently deep assessment. Both
issues usually have no hard limits that demarcate a region
of feasibility, but they make up soft optimization criteria
that directly influence the economical competitiveness of a
product.

Finally, in addition to the technological feasibility, the
question of the associated cost will decide on the in-
troduction of 1 Tbps packet networks. We therefore
make non-technological suggestions towards standardiza-
tion how to alleviate the requirements for future ultra-high
speed packet processing in order to relieve the implemen-
tation effort and thus cost—as well as possibly power con-
sumption. Our suggestions reach from re-thinking long-
established dimensioning rules, over changes of the sup-
ported switching granularity, to hints how to reduce the ac-
tual processing complexity.

In summary, we expect that 1 Tbps packet switching will
become technologically feasible and hopefully also eco-
nomically and ecologically viable in the years to come. The
extrapolated advances in technology along with the appli-
cation of some of the proposed non-technological aspects

should provide the technical prerequisites. The economic
impetus is likely given by the ongoing traffic growth of the
Internet and the associated need to continuously expand
network capacities.

Acknowledgments

The work presented in this paper was partly funded within
the 100GET projects 100G ARP and NPU100 by the Ger-
man Bundesministerium fiir Bildung und Forschung under
the contract numbers 01BP0768 and 01BP0778.

References

(1]
(2]

[10]

(11]

[12]

[13]

H. J. Chao and B. Liu. High Performance Switches
and Routers. Wiley-IEEE Press, May 2007.

Cisco. The Cisco QuantumFlow Processor:
Cisco’s Next Generation Network Processor.
http://www.cisco.com/en/US/prod/collateral/
routers/ps9343/solution_overview_c22-448936.pdf,
2008.

AMCC - Applied Micro Circuits Corpora-
tion. nP7310 - 10-Gbps Network Proces-
sor with Integrated Traffic Manager. Prod-
uct Brief, https://www.amcc.com/MyAMCC/
retrieveDocument/SNP/nP7310_060822.pdf, 2006.
Cavium Networks. OCTEON Plus CN58XX
4 to 16-Core MIPS64-Based SoCs. Product
Brief, http://www.caviumnetworks.com/pdfFiles/
CNS58XX_PB%20Rev%201.5.pdf, 2008.

Xelerated. Xelerator X11 Network Processors Prod-
uct Brief. http://www.xelerated.com/uploads/files/5.
PDF, 2008.

Bay Microsystems. Chesapeake - Product Overview
Page. http://www.baymicrosystems.com/products/
network-silicon/chesapeake.php, 2009.

EZChip. Network Processor Designs White Pa-
per. http://www.ezchip.com/Images/pdf/ezchip_
white_paper.pdf, 1999.

Netronome. Network Topology Offload with Intelli-
gent NICs. http://xen.org/files/xensummitboston08/
2008-06-23-net-topo.pdf, 2008.

Intel Corporation. IXP2800 Product Brief.
http://download.intel.com/design/network/ProdBrf/
27905403.pdf, 2004.

PCI Industrial Computers Manufacturers Group
PICMG. AdvancedTCA PICMG 3.0 short form
specification. http://www.picmg.org/pdf/PICMG_3_
0_Shortform.pdf, 2003.

EZchip Technologies, Inc. NP-4 Network Proces-
sor — 100G NPU with TM. http://www.ezchip.com/
products.htm#NP4, 2008.

Xelerated AB. Xelerated HX300 family. http://www.
xelerated.com/templates/page.aspx ?page_id=329,
20009.

A. Nikologiannis et al. An FPGA-based queue man-
agement system for high speed networking devices.
Microprocessors and Microsystems, 28(5-6):223 —
236, 2004. Special Issue on FPGAs: Applications
and Designs.

(14]

[15]

[16]

(17]

(18]

(19]

(20]
(21]
(22]

(23]

[24]

[25]

(26]

[27]

(28]

(29]

(30]

S. Iyer et al Designing packet buffers for
router linecards. I[EEE/ACM Trans. Networking,
16(3):705-717, June 2008.

G. Appenzeller et al. Sizing router buffers. SIG-
COMM Comput. Commun. Rev., 34(4):281-292,
2004.

J. Sommers et al. An SLA perspective on the router
buffer sizing problem. SIGMETRICS Perform. Eval.
Rev., 35(4):40-51, 2008.

J. Garcia-Vidal et al. A DRAM/SRAM memory
scheme for fast packet buffers. IEEE Trans. Com-
put., 55(5):588-602, 2006.

R. Giladi. Network Processors: Architecture, Pro-
gramming, and Implementation. Morgan Kaufmann,
2007.

Intel. Intel Internet Exchange Architecture Porta-
bility Framework Developers Manual, SDK 3.5 Re-
lease. Intel corporation, November 2003.

Qimonda AG, www.qimonda.com.

RAMBUS, www.rambus.com.

Samsung Semiconductor. http://www.samsung.
com/global/business/semiconductor/products/dram/
Products_ DDR3SDRAM.html.

Intel roadmap overview. http://download.intel.
com/pressroom/kits/events/idffall_2008/SSmith_
briefing_roadmap.pdf, 2008.

M. Meghelli et al. A 10Gb/s 5-Tap-DFE/4-Tap-
FFE transceiver in 90nm CMOS. IEEFE International
Solid-State Circuits Conf., 2006. ISSCC 2006. Digest
of Technical Papers., pages 213-222, Feb. 2006.

J. Lee et al. A 20Gb/s duobinary transceiver in
90nm CMOS. IEEE International Solid-State Cir-
cuits Conf., 2008. ISSCC 2008. Digest of Technical
Papers., pages 102-599, Feb. 2008.

M. Harwood et al. A 12.5Gb/s SerDes in 65nm
CMOS using a baud-rate ADC with digital receiver
equalization and clock recovery. IEEE International
Solid-State Circuits Conf., 2007. ISSCC 2007. Digest
of Technical Papers., pages 436-591, Feb. 2007.
R.A. Philpott et al. A 20Gb/s SerDes transmitter
with adjustable source impedance and 4-tap feed-
forward equalization in 65nm bulk CMOS. Custom
Integrated Circuits Conf., 2008. CICC 2008. IEEE,
pages 623-626, Sept. 2008.

H. Shi et al. Study of fundamental limit and pack-
aging technology solutions for 40-gbps transceiver
package design. Electronic Components and Tech-
nology Conf., 2008. ECTC 2008. 58th, pages 1128—
1131, May 2008.

J. Nasrullah et al. A terabit/s-throughput, SerDes-
based interface for a third-generation 16 core 32
thread chip-multithreading SPARC processor. 2008
IEEE Symposium on VLSI Circuits, pages 200-201,
June 2008.

W. Lautenschliger et al. Frame aggregation in packet
core networks — overview and experimental results.
In Proc. 10. ITG Symp.Photonic Networks, Leipzig,
May 20009.

