LR AARXS .
RN INSTITUT FUR
sosatatet i 1A KOMMUNIKATIONSNETZE
gt Universitat Stuttgart UND RECHNERSYSTEME

,z: BERKS ,: o ;
\ Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kithn

Copyright Notice

©2008 Spinger-Verlag GmbH Berlin Heidelberg. This is an author-created
version of the work. It is posted here by permission of Springer-Verlag for your
personal use. The article is published in Springer LNCS 4982 and is available
at http://www.springerlink.com/content/t8234602542055n8/ .

Institute of Communication Networks and Computer Engineering
University of Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: +49-711-685-68026, Fax: +49-711-685-67983
email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Performance Evaluation of Quick-Start TCP
with a Linux Kernel Implementation

Michael Scharf and Haiko Strotbek

Institute of Communication Networks and Computer Engineering (IKR)
University of Stuttgart, Germany
michael.scharf@ikr.uni-stuttgart.de, haiko@strotbek.com

Abstract. Quick-Start is an experimental extension of the Transmis-
sion Control Protocol (TCP) that uses explicit router feedback to speed
up best effort data transfers. With Quick-Start, TCP endpoints can re-
quest permission from the routers along the path to send at a higher rate
than allowed by the default TCP congestion control, which avoids the
time-consuming Slow-Start. However, since Quick-Start TCP requires
modifications in the protocol stacks of end-systems and routers, realiza-
tion complexity is a major concern. This paper studies Quick-Start with
a new implementation in the Linux protocol stack. We first show that
Quick-Start support can be added to a real stack with rather limited
effort, without causing much processing overhead. Second, we perform
measurements with Web applications and study the impact of impor-
tant parameters. These experiments with real applications demonstrate
that Quick-Start can significantly speed up data transfers, and they con-
firm the outcome of previous simulation efforts. Our results suggest that
Quick-Start is a lightweight mechanism that could be very beneficial for
broadband interactive applications in the future Internet.

1 Introduction

Most Internet applications use the Transmission Control Protocol (TCP) for
reliable, best effort transport. Since TCP is a pure end-to-end protocol, the con-
nection endpoints must continuously probe the available bandwidth on the path
in order to adapt their sending rate. The TCP congestion control is challenged
by new broadband technologies with large bandwidth-delay products. In such
cases, TCP has difficulties in determining an appropriate data rate, in particular
after connection setups, or after long idle periods. Several “clean slate” Internet
research efforts address this issue by using explicit feedback from routers.
Quick-Start [1] is an experimental TCP extension that applies explicit router
feedback to avoid the time-consuming Slow-Start [2], which is often considered
to be a problem in high-speed networks. With Quick-Start, hosts can ask for a
high initial sending rate, e. g., during the three-way handshake, and the routers
along the path can approve, modify, or discard this request. Several simulation
studies [3,4] show that these mechanisms can significantly reduce the comple-
tion time of high-speed data transfers over paths with a large bandwidth-delay
product, such as over broadband wide area networks, satellite or cellular links.

Router Router

pacing

Standard
algorithm

Fig. 1. Illustration of a Quick-Start (QS) request during the three-way handshake

The new Quick-Start TCP extension requires modifications of the proto-
col stacks, both in end-systems and in routers. Thus, similar to other related
schemes for router-assisted congestion control, implementation and deployment
complexity is a major concern. In order to answer the question whether Quick-
Start could be useful in the future Internet, implementations and experiments
with real applications are required [1].

This paper contributes to this discussion in two ways: First, we present a
complete implementation of Quick-Start in the Linux kernel. To the best of
our knowledge, it is the first operational Quick-Start implementation in a real-
world protocol stack. We also report some of the lessons learned during our
development work, extending an initial presentation in [5]. Second, we use our
implementation to perform experiments with different applications and network
scenarios. The results illustrate the usefulness of Quick-Start in real setups.

The rest of this paper is structured as follows: Section 2 introduces the Quick-
Start extension and surveys related work. In Section 3, we present details of our
implementation. Section 4 reviews our evaluation methodology. The results of
our measurements are discussed in Section 5. Section 6 concludes the paper.

2 Quick-Start TCP Extension

2.1 Overview

The Quick-Start mechanism enables TCP connection endpoints to determine an
allowed sending rate in cooperation with the routers on the path, in particular at
the beginning of a data transfer. Fig. 1 illustrates a Quick-Start request during
the connection establishment: In order to indicate its desired sending rate, the
originator adds a Quick-Start request option to the Internet Protocol (IP) header.
This target rate is encoded in 15 coarse-grained steps ranging from 80 kbit/s to
1.31 Gbit/s. The routers along the path can approve, modify, or disallow this
rate request. If the request arrives at the destination, the granted rate is echoed
back as a piggybacked TCP option (Quick-Start response). The originator then
determines whether all routers along the path have approved the request. If not,
the default congestion control (Slow-Start) is used to ensure backward compat-
ibility. If the Quick-Start request is successful, the originator can immediately

increase its congestion window and start to send with the approved rate. After
one round-trip time (RTT) the Quick-Start phase is completed and the default
TCP congestion control mechanisms are used for subsequent data transfers.

Quick-Start does not guarantee any data rate, i. e., it is a lightweight speedup
mechanism for elastic best effort traffic only. Simulations [3] and analytical mod-
els [4] reveal that the transfer times of moderate-sized files can be improved by
several hundred percent. In addition to avoiding initial Slow-Starts, the Quick-
Start mechanism could also be quite useful in the middle of data transfers, e. g.,
after longer idle periods, or in combination with link layer mobility triggers.

However, Quick-Start TCP, as any router-assisted congestion control ap-
proach, comes at some cost: It requires support in all routers along a path,
which causes processing overhead and which makes a short-term deployment in
the Internet unrealistic. There are also interworking issues, e. g., with IP tunnels
and firewalls. This is why [1] recommends that the use of Quick-Start should
initially be limited to controlled environments such as intranets.

2.2 Related Work

There are numerous proposals that address the performance limitation of TCP’s
Slow-Start. A comprehensive survey can be found in [1]. Four principal ap-
proaches can be distinguished: (1) Schemes that apply bandwidth estimation
techniques in order to determine the available bandwidth, (2) additional function
blocks that share path capacity information, such as a “congestion manager”,
(3) explicit feedback from network elements along a path, and (4) proposals
to use an arbitrarily high sending rate at the beginning of data transfers [6].
Quick-Start belongs to the third category. It does not suffer from the inaccuracy
of end-to-end bandwidth estimation techniques. Unlike the second approach,
Quick-Start can also handle completely new paths. And, different to the fourth
category, there is no danger of severe congestion due to over-aggressiveness.

Quick-Start is to be used in transient phases only, when precise information
about the path is missing. Other research approaches suggest replacing the TCP
congestion control by a fine-grained, per-packet feedback from routers. Two ex-
amples are the eXplicit Control Protocol (XCP) and the Rate Control Protocol
(RCP). XCP has been implemented in FreeBSD [7] and Linux [8]. In the latter
case, the XCP protocol is encoded as a TCP option, and the router functions
are realized as a loadable module for the Linux traffic control. A Linux imple-
mentation of RCP has recently been reported in [9]. Here, a shim layer has been
added in the endpoints between IP and TCP, and the router support is provided
by a Linux netfilter plugin. These implementation efforts demonstrate the need
for practical experiments with such new congestion control schemes.

3 Quick-Start Implementation in the Linux Kernel

3.1 Required TCP/IP Protocol Stack Extensions

Quick-Start requires modifications in the stacks of end-systems as well as ad-
ditional processing in every node that forwards IP packets towards potential

Activate QS

[= N TCP

Socket interface ‘ (do,tcp,setsockopt)

< Sysctl ¢onfig
Flow control
s T o s o L Fanas s |
Options L control mwrwl Opti
T

Send ACK

IP

ip_local_deliver

Sysctl config

. . l/TypicaI flow of packets
Traffic metering,

-
adm. control m ip_finish_output

dev_queue_xmit

net_rx_action

Fig. 2. Linux kernel code modifications by our Quick-Start implementation

bottleneck links. For instance, the originator must build and send the IP option,
validate the response, and then use the allowed data rate when sending new data.
This requires an additional rate pacing mechanism because TCP is a window-
based protocol without rate control. The receiver must echo back the requests
as a TCP option. Furthermore, the flow control may have to be changed [10].
Quick-Start enabled routers require three new functions: First, routers have
to determine the capacity of the outgoing links and keep track of their utilization,
unlike today’s routers, which are not necessarily aware of link capacities. This
information can be either obtained by configuration, by cross-layer information
exchange with the sub-IP layer, or by bandwidth estimation techniques. Second,
routers must process the new IP options, i. e., they must read and write some of
the entries (e.g., the data rate). And third, routers must perform an admission
control that decides whether to accept a Quick-Start request, and which data
rate to grant. This typically requires a short history about recently approved
requests. All three functions can be realized without keeping any per-flow state.

3.2 Implementation Details

The Linux kernel has a highly optimized TCP /IP networking stack. This stack is
thus an excellent basis for studying the implementation effort caused by Quick-
Start. We extended the Linux TCP/IP stack so that it completely implements
Quick-Start for IP version 4 according to [1], using kernel version 2.6.20 as
basis. The implemented features include both the end-system and router func-
tions mentioned in the previous section. Fig. 2 gives a simplified overview of the
structure of the IP and TCP layer in the Linux kernel, highlighting a couple of
important functions that are involved in packet processing (details are given e. g.
n [11]). The blocks in this figure illustrate our main modifications of the kernel
code. Even though the Quick-Start mechanism is rather simple compared of the

Uninitialized
Enabled

SYN or data segment

Sent request
Not a;ﬁ)roved or

invalid response

New request New request

Approved rate>0

[Report rate] [Not supported]
QS state: arge(C/V\VC ?cmevedd, gr‘
¥ Reportsent Report sent_y “Report rate| Timeou a"“’%'d’pﬁ%m Jor paced data, or
(L N W
L ——— | Data available
Fig. 3. Quick-Start state engine Fig. 4. Rate pacing state engine

complexity of TCP as a whole, changes have been required in almost every part
of the TCP implementation, and also in several IP functions. In the following,
we briefly explain some aspects where implementing the specification [1] has not
been straightforward. More details are documented in [12].

A Quick-Start sender must keep additional state concerning a request and the
rate pacing. Our Quick-Start state engine is sketched in Fig. 3. Some complexity
is caused by the requirement that requests must only be sent in IP packets
carrying a TCP segment that gets acknowledged, i.e., with a SYN flag or with
payload data. Further states are needed for the rate pacing (see Fig. 4), because
the rate pacing only starts when new data is available, and because there are
several abort conditions. We have realized the rate pacing by an additional timer.
Each time the timer expires, the congestion window snd_cwnd is increased by a
given amount of segments, up to the Quick-Start congestion window cwnd_gs. As
Linux offers a high timer granularity of 1 ms when running with HZ = 10001 /s,
there is some degree of freedom whether to use few or many timers. As shown in
Fig. 5, one can distinguish three different cases: In case 1, the increase of cwnd_gs
is small and the timers must be distributed evenly over rtt_ticks possible timers
during one RTT. However, if cwnd_gs is large (case 2), the maximum number
of timers rtt_ticks can be reached, and carryover segments might be needed
if cwnd_gs is not a multiple of rtt_ticks. The overhead of many timers can
be reduced by enforcing a minimum window increase per timer (case 3), i.e., a
minimum chunk size M. The number of timers then follows as

timer = min (cwnd_gs/M, rtt_ticks)

The configuration parameter M allows to trade off timer processing overhead vs.
traffic burstiness. By default, we use a minimum chunk size of 3 segments.

The Quick-Start router functions are realized by a new method in the for-
warding path of IP packets. This method meters the traffic during intervals of
duration D (1s, by default), and it processes the Quick-Start requests. We im-
plemented the “target algorithm” admission control [1, 3]. The recently approved
requests are stored in a ring buffer (cf. [4]). The default size is two slots, i.e.,
the granted bandwidth is remembered for H = 2 D = 2s. An alternative solu-
tion would have been to use the Linux netfilter hooks. However, a precise traffic
metering requires some additional processing of every packet anyway.

Case 1: Small window increase

f . Minimum
cwnd_gs=15;1 2 3 456 7 89 10 11 42 13 14 15 7 chunk M =1
chunk =1 m :

H 1 Time [Ticks]
Case 2: Large window il '

'3 6 9 12 15 18 21 24 27 30 32 34 36 38 40 42 44 46 48 50 ., Minimum
cwnd_gs =50 " chunk M =2
chunk =1 " "

"Carryover" Time [Ticks]
Case 3: Large window i with bundling
510 14 1822 26 3034 38 4246 50 |
.+ Minimum
cwnd_gs = 50 chunk M =4
chunk =4
[0 11 12 13 14 15 16 17 18 19 20Time [Ticks]
RTT = 20 Ticks

Fig. 5. Incrementing the congestion window with timers to realize rate pacing

3.3 Implementation Complexity and Lessons Learned

The experiments in the next sections show that our Quick-Start implementation
is fully operational. The total implementation effort has been rather limited:
The patch adds or modifies less than 2000 lines of kernel code (< 5% of the
TCP and IPv4 code). It requires about 20 additional integer variables per TCP
connection in the tcp_sock structure and some new variables per device in the
IP layer. It is configured by some additional sysctl variables and ioctl calls.

The addition of Quick-Start results in some ugly code. Since Quick-Start
violates the layer separation between IP and TCP, interface extensions are re-
quired between the layers. Options have to be processed in a couple of different
functions so that many parts of the TCP/IP stack have to be modified. A tricky
problem is that the TCP maximum segment size must be reduced for IP packets
carrying a Quick-Start IP option in order to avoid packet fragmentation.

A remaining challenge is to automatically determine the capacity of outgo-
ing links. There are certain possibilities to obtain such information from the
corresponding Linux device drivers, but there is no “one-fits-all” interface from
the network layer to the drivers, even for standard Ethernet network cards. Our
current solution is to manually configure the link capacity for each interface.

These changes result in performance costs. The overhead introduced by the
Quick-Start functions is rather small in typical usage scenarios. In the TCP layer,
a fine-grained rate pacing requires additional timers. Yet, this does not have a
significant impact on the system load unless there are many parallel connections.

The overhead in the IP layer is also small, as long as only few packets carry
Quick-Start options. We performed a kernel profiling analysis to determine the
load share of all method calls that handle the packet forwarding and process
IP options. Fig. 6 presents the results obtained from the “oprofile” tool, using
both an unmodified and a patched kernel. A router (P4 2.8 Ghz PC with Gbit/s
Ethernet interfaces) was exposed to a small packet rate of 100 packets/s and a
high load of 300, 000 packets/s. Both workloads use small 50 byte packets.

Without any Quick-Start options being present, there is a measurable over-
head, but it is rather small. The additional effort is mainly caused by the traffic
metering that counts every IP packet. It could be avoided if the link utilization

100 :

F+—— Original kernel 1 c“ent Server
[~ Kernel with Quick-Start] P4 2.8 GHz P4 2.8 GHz
2 GB RAM 2 GB RAM

Qs request gyn ACk
ACK QS response

300,000 packets/s

Request

100 packets/s

Load caused by IP packet forwarding [%]

Response

I I I I
0015 1% 5% 50 %
Ratio of packets with Quick-Start IP Option

L
Server response time

10 Mbit/s Ethernet

Fig. 6. Router processing overhead Fig. 7. Client-server communication

was already available, e.g., from network monitoring components. If 1% of the
packets include a Quick-Start option, which could be a realistic scenario, the
option processing can increase the load by few percent. Still, this effect neither
significantly decreases the maximum throughput (about 330, 000 packets/s), nor
increases the packet delay in the router (ca. 50 us in this scenario). Only if the
share of Quick-Start packets is very high, the Quick-Start processing causes a
considerable additional system load, which can mainly be attributed to the recal-
culation of the random Quick-Start nonces (see [1]). But such a traffic character-
istic is unrealistic and should never occur when Quick-Start is used as foreseen.

4 Measurement Methodology

4.1 Testbed Setup

In order to test our Quick-Start implementation and to study the benefit com-
pared to standard TCP, we used a network setup with a client and a server. As
illustrated in Fig. 7, Quick-Start is activated for data transfers from the server
to the client, with the request being sent in the SYN/ACK segment. Both com-
puters were interconnected by a direct Ethernet link that is forced to 10 Mbit/s
line speed. This is a realistic value for long-distance connections over today’s
access and wide area networks. Client and server are Ubuntu 7.04 installations
running the modified Linux kernel. The Linux “NetEm” network emulation was
used to delay packets for a constant duration, which models the latency of wide
area networks. As recommended in [10], the socket buffers were increased to a
larger value (8 Mbyte) in order to avoid any limitation by the TCP flow control.

4.2 Quick-Start Enabled Applications

A Quick-Start request can be activated by two mechanisms: First, we have im-
plemented some kernel-internal heuristics that can automatically issue a Quick-
Start request. For instance, a kernel can be configured to send a request in every
TCP connection setup. The request can also automatically be repeated after

Tase req. fmbed. req. 1 fmbed. req.2 Tase req.

; :] Time
' Object download time + Think time

Fig. 8. HTTP model used by the “surge” Web traffic generator

longer idle times, if the congestion window validation [13] has reduced the win-
dow. Second, applications can explicitly trigger a Quick-Start request by setting
a new socket option, either before or during the usage of the connection.

Quick-Start is particularly interesting for interactive applications that fre-
quently exchange certain amounts of data and thus often suffer from the Slow-
Start. In our experiments, we use two different types of interactive applications:
First, we perform tests with simple client and server C programs that commu-
nicate as shown in Fig. 7, with variable amounts of data to be transferred. The
measured server response time is averaged over five consecutive measurements.

Second, in order to study Web applications, we use a “lighttpd” Web server
(version 1.4.18) and the “surge” Web traffic generator (version 1.00a) [14], which
supports HTTP/1.0 and HTTP/1.1 requests, without or with pipelining. We
use mainly the default configuration, i.e., there is a configurable number of
users/threads that each send HTTP requests to the Web server. As performance
metric we study the object download time, which is the total duration of loading
a page consisting of a base document and potentially also embedded files (see
Fig. 8). The measurement duration is one hour per sample. Concerning the
object characteristics and request patterns, we first use the “surge default” Web
model with rather small file sizes. However, recent studies [15] reveal that new
Web applications frequently transfer objects of the order of 100kByte (high-
resolution images, complex database queries, 3D structures, ...). In order to
reflect the traffic characteristics of such broadband interactive applications, we
also use a second, customized “large files” workload model (see Tab. 1).

5 Experimental Evaluation

5.1 Quick-Start Validation

In the following, we discuss some results of systematic tests with the Quick-
Start mechanism. Fig. 9 and 10 depict several traces of the traffic in download

Table 1. Used Web traffic model parameters (selection)

Parameter “Surge default” model “Large files” model
Ratio base/embedded /loners 0.30 / 0.38 / 0.32 0.30 / 0.38 / 0.32

File popularity Zipf, 2000 files Uniform, 2000 files

File size distribution Mixed logn. and parato Logn., u =11.92, 0 = 1.0

No. embed. files per object Pareto, o = 1.245, k =2 Geometric, 1/p = 2
User think time Pareto, a = 1.4, k=2 Pareto, a = 1.4, k=2

10 P T e e e e 10 e . . e
L Quick-,
9 “Start 9 Reno
8 8-
% T @ T
2 6 2 6 Quick |
o Quick-Start with 4 o Start [,
s 5 ssthresh reduction | ® 5F Quick-Start with
= = 1 ssthresh reduction
< <
T 4 7 T 4 7
© o L
o 5l +——+ S8, Reno - [+—— S8, Reno i
+ ==+ 88, Cubic 4 L + ==+ S8, Cubic 4
21 »——= @8, Reno, no ssthresh reduc. _| o »——= Q8S, Reno, no ssthresh reduc. _|
* = =% @8, Cubic, no ssthresh reduc. | L * = = x QS, Cubic, no ssthresh reduc. |
1= #+——* QS, Reno, ssthresh reduction | 1= *——* QS, Reno, ssthresh reduction _{
= =% QS, Cubic, ssthresh reduction | #* — =% QS, Cubic, ssthresh reduction {
[R . N W W P S S SRS S S oLl N S FET S PR P T SR S
05 0 05 1 15 2 25 3 35 4 45 5 05 0 05 1 15 2 25 3 35 4 45 5
Time since SYN segment [s] Time since SYN segment [s]

Fig. 9. Data rate trace (RTT = 100 ms) Fig. 10. Data rate trace (RTT = 200 ms)

direction after the connection setup, comparing Slow-Start (SS) and Quick-Start
(QS). The data rates have been obtained from a “tcpdump” trace by averaging
the IP packet sizes within intervals of one RTT. We study the Reno congestion
control, which implements [2], as well as the frequently used Cubic high-speed
TCP variant [16]. In Fig. 9, the emulated minimum RTT is 100 ms. In this case a
Slow-Start needs about one second to reach a data rate that completely fills the
link, regardless of the congestion control variant. In contrast, the link can almost
instantaneously be utilized with a Quick-Start request of ¢ = 5.12Mbit/s, which
is the largest possible request value smaller than the link capacity (see [1]).

The Quick-Start specification [1] leaves open whether to modify the Slow-
Start threshold ssthresh [2] after a successful Quick-Start procedure. This vari-
able is an estimation of the minimum available bandwidth, and it is challenging
to define a reasonable initial value. Two alternative strategies could be:

1. No adaptation of ssthresh by the Quick-Start functions
2. Adaptation of ssthresh to the Quick-Start window (or some multiple of it)

The rational behind the latter strategy would be to use the information about
the path characteristic obtained from the Quick-Start mechanisms.

Fig. 9 shows that a reduction of ssthresh can be disadvantageous compared
to the first strategy, if the Quick-Start request rate ¢ is smaller than the path
capacity. In this case, the TCP sender enters the congestion avoidance phase
before the link capacity is reached. Hence, it may require many seconds to send
with full speed. This effect would be even more severe if a smaller Quick-Start
request rate was used (e.g., ¢ = 2.56 Mbit/s). In the congestion avoidance phase,
the Cubic variant outperforms Reno due to its higher aggressiveness.

For a higher RTT of 200 ms, the situation is more complicated, as shown in
Fig. 10. In this case, the bandwidth-delay product of the emulated path corre-
sponds to 167 packets, which is larger than the default initial ssthresh value of
the Cubic algorithm in the used 2.6.20 kernel version!. With Cubic, the sender
enters the connection avoidance state at a sending rate about 6 Mbit/s, and it

! Newer Linux kernels use a larger threshold for Cubic to overcome this problem.

4
Analytical model “Large files" model

~

w
o

Slow-Start

[

n
o

Quick-Start
5.12 Mbit/s

WER W !! ”””

10 107 0 HTTI 0 HP/I 1 HTP/\ 1p HTT1 0 Hl 1 HTTP 1p
Transfer size [byte] HTTP request mechanism

o

"Surge default" model

Mean object download time [s]
N

Speedup of Quick-Start vs. Slow-Start

o
o

Fig. 11. Rel. performance improvement Fig. 12. Benefit for Web traffic (1 user)

takes longer to fully utilize the path than Reno, which uses a very large default
initial ssthresh. Again, a threshold reduction is detrimental: In particular the
Reno congestion control requires then a long time to completely utilize the path,
and the Slow-Start ends up to be faster. From this follows that ssthresh should
not be decreased after a successful Quick-Start request. This is why we only use
the “no adaptation” strategy in the following experiments.

5.2 Performance Benefit of Quick-Start

The measurements with our test programs can quantify how much the data trans-
fer times could be improved by Quick-Start. Fig. 11 shows the relative speedup
of data transfers n = Tsg/Tqs, where T is the server response time (cf. Fig. 7).
An analytical expression for 7 has been derived in [4]. Our measurements con-
firm that Quick-Start can improve the response time by several hundred percent
when the RTT is larger than 50 ms. Quick-Start is of particular benefit for trans-
fer sizes between 10kB and 1 MB, and the speedup is slightly larger for Reno
because of the higher initial ssthresh value. For longer file transfers, the relative
improvement is rather small because the Slow-Start is then only a transient ef-
fect. Very short transfers cannot be improved neither, since the initial congestion
window is anyway large enough to send out such data immediately.

The comparison of the Linux measurement results with the analytical model
from [4] reveals a close match, provided that the model takes into account the
so-called “Quick ACKs” [17]. This mechanism of the Linux stack makes the
Slow-Start more aggressive than foreseen by the TCP standards [2].

A result of our experiments with the Web server and the “surge” HTTP
traffic generator is given in Fig. 12. Here, the minimum RTT is 200 ms, and the
10 Mbit /s link is used by one emulated user only. The mean object download time
with the standard Slow-Start is always larger than with Quick-Start, independent
of the HTTP protocol variant being used. However, the absolute difference is
rather small for the “surge default” scenario. This is to be expected, since the
mean size of an object (i.e., a Web page) is here only of the order of 17kB.
For larger file sizes, Quick-Start can significantly reduce the download duration.

o

T T 1T 1T T 1T T T T T T TT 5 T T T T T T
[+— Slow-Start [+——+ Slow-Start, 4 users
[Quick-Start, 5.12 Mbit/s | *— Quick-Start, 5.12 Mbits, 4 users

@ »
o s @
T T
N
@ IS
o s o
T
I

5
w
T
1

"Large files" model —

I
@
a4
3
TT

~
n
T
1

o

o
T
1

" "Large files" model

Slow-Start 7]

Averaged object download time [s]
Averaged object download time [s]

"Surge default" model N
fr

Quick-Start—

bed
o
ed
@
T
1

| "Surge default" model B
T T N | I . | . ! . ! .

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 40 60 80 100
Number of traffic generators (users) Quick-Start admission threshold [%]

=)

o
o

Fig. 13. Performance for increased load Fig. 14. Variation of the QS capacity

A speedup of more than 1s can be achieved for HTTP/1.0 traffic, since here
every file has to be transported over a new TCP connection suffering from the
Slow-Start. But a significant improvement can also be observed for HTTP/1.1
persistent connections, both without and with request pipelining.

5.3 Impact of the Quick-Start Admission Control

At the Web server, the IP layer realizes the Quick-Start router functions, i. e., it
monitors the utilization of the 10 Mbit/s link and processes the Quick-Start re-
quests. They are approved if the resulting bandwidth, including the current traf-
fic and recently approved request, is less than a certain threshold [1, 3]. If there
are many requests in parallel, only a certain share will be approved. In Fig. 13,
the number of users generating HTTP requests is successively increased, result-
ing in more Quick-Start requests and a higher link utilization. For simplicity we
consider here the object download time averaged over six experiments with all
combinations of Reno/Cubic and the three HTTP variants. As to be expected,
download durations increase if the load gets larger. And the performance benefit
of Quick-Start is also smaller, because less requests are approved and because the
granted bandwidth is smaller. This illustrates that the Quick-Start mechanism
mainly targets at underutilized links.

However, it is not necessary to allow Quick-Start to use the full link capacity:
The diagram in Fig. 14 shows that application performance can also be improved
if only a certain part of the capacity (e. g., only 50 %) is available for Quick-Start
requests. This again confirms analytical predictions from [4].

6 Conclusion and Future Work

Quick-Start is an experimental TCP extension that allows to immediately uti-
lize links in high-speed networks. This avoids the time-consuming Slow-Start,
which is considered to be a limiting factor for broadband interactive applications.
Quick-Start requires explicit router feedback, but it is rather lightweight com-
pared to other related mechanisms that are proposed for a future Internet. This

paper presents a Quick-Start implementation in the Linux stack and shows that
the resulting overhead and performance cost is small. The impact of several pa-
rameters is studied by measurements, including both simple validation tests and
experiments with HT'TP traffic. Our measurements confirm the outcome of simu-
lation studies, and they demonstrate that Quick-Start can significantly improve
the performance of interactive applications communicating over long-distance
wide area networks. Future work will also consider hardware-based Quick-Start
implementations and compare Quick-Start to related congestion control schemes.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Floyd, S., Allman, M., Jain, A., Sarolahti, P.: Quick-Start for TCP and IP. IETF
RFC 4782 (experimental) (January 2007)

. Allman, M., Paxson, V., Stevens, W.: TCP congestion control. RFC 2581 (pro-

posed standard) (April 1999)

Sarolahti, P., Allman, M., Floyd, S.: Determining an appropriate sending rate over
an underutilized network path. Computer Networks 51(7) (May 2007) 1815-1832
Scharf, M.: Performance analysis of the Quick-Start TCP extension. In: Proc.
IEEE Broadnets. (September 2007)

Scharf, M., Strotbek, H.: Experiences with implementing Quick-Start in the Linux
kernel. Presentation at IETF 69, Chicago, IL, USA (July 2007)

Liu, D., Allman, M., Jin, S., Wang, L.: Congestion control without a startup phase.
In: Proc. PFLDnet2007. (February 2007)

Falk, A., Faber, T., Coe, E., Kapoor, A., Braden, B.: Experimental measurements
of the eXplicit Control Protocol. Proc. PFLDnet2004 (February 2004)

Zhang, Y., Henderson, T.R.: An implementation and experimental study of the
Explicit Control Protocol (XCP). In: Proc. IEEE Infocom 2005. (March 2005)
1037-1048

Dukkipati, N., Gibb, G., McKeown, N., Zhu, J.: Building a RCP (Rate Control
Protocol) test network. In: Proc. IEEE HOTI. (August 2007)

Scharf, M., Floyd, S., Sarolahti, P.: Avoiding interactions of Quick-Start TCP and
flow control. IETF Internet Draft, work in progress (July 2007)

Wehrle, K., Pahlke, F., Ritter, H., Miiller, D., Bechler, M.: The Linux Networking
Architecture. Prentice Hall, Upper Saddle River, NJ, USA (2005)

Strotbek, H.: Design and implementation of a TCP extension in the Linux kernel.
Diploma thesis (in German), University of Stuttgart, IKR (May 2007)

Handley, M., Padhye, J., Floyd, S.: TCP congestion window validation. IETF
RFC 2861 (experimental) (June 2000)

Barford, P., Crovella, M.: Generating representative Web workloads for network
and server performance evaluation. ACM SIGMETRICS Perform. Eval. Rev. 26(1)
(June 1998) 151-160

Schneider, F., Agarwal, S., Alpcan, T., Feldmann, A.: The new Web: Character-
izing AJAX traffic. In: Proc. 9th International Conference on Passive and Active
Netwo rk Measurement, Springer LNCS. (April 2008)

Rhee, I., Xu, L.: Cubic: A new TCP-friendly high-speed TCP variant. In: Proc.
PFLDnet2005. (February 2005)

Sarolahti, P., Kuznetsov, A.: Congestion control in Linux TCP. In: Proc. USENIX
Annual Technical Conference. (June 2002)

